
n Team

01 amanb,labarpr,walthagd,

02 breenjw,eatonmi,runchemr,

03 buqshank,macshake,mcgeevsa,smebaksg

04 correlbn,moravemj,shinnsm,wanstrnj

05 parasby,pedzindm,sheetsjr,

06 cheungkt,foltztm,ngop,

07 hannumed,hugheyjm,weavergg,woodhaal

08 carvers,davidsac,kominet,krachtkq

09
beaversr,duganje,lemmersj,popenhjc

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201030-vg-teamXX

Sit with your team
(in two rows, so
that you can face
each other)

Check out
VectorGraphics
from SVN

Browse its Planning
folder

Object-Oriented Design

Begin your VectorGraphics project

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive names,
Control-Shift-F, etc

A team project to create a
scalable graphics program.

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

 A team assignment

◦ So some division of labor is appropriate (indeed,
necessary)

 A learning experience, so:

◦ Rule 1: every team member must participate in
every major activity.

◦ Rule 2: Everything that you submit for this project
should be understood by all team members.

 Not necessarily all the details, but all the basic ideas

 Read the specification

 Exchange contact info – you may want to add
to your planning folder.

 Start working on your first milestone due
Friday
◦ But try to get it done by Thursday so you can get

some feedback in class before it’s graded.

◦ Next slides are some review of CRC cards and UML.

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards which then
get turned into your UML class diagram

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements
 Come from nouns

in the problem description

2. Determine responsibilities
of each class
 Come from verbs

associated with the classes

3. Describe relationships
between classes:

is-a, has-a

May…

Represent single concepts

Circle, Investment

Represent visual elements of

the project

FacesComponent,

UpdateButton

Be abstractions of real-life

entities

BankAccount,

TicTacToeBoard

Be actors

Scanner, CircleViewer

Be utilities

Math

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Class
name

Collaborators

Responsibilities

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility
of the program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes  Return to step 1

◦ No 

 Decide which classes
should help

 List them as collaborators
on the first card

 Add additional
responsibilities to the collaborators’ cards

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes stay classes

 Responsibilities become properties (methods)

 If attributes (fields) are obvious, add them

 Collaborators are usually has-a relationships

 If is-a relationships are obvious, add them

 You can probably work in parallel as two pairs
◦ Or a subteam can begin work on your Screen Layout

sketches

